| Centre Number | Candidate Number | Name | |---------------|------------------|------| | | | | # CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education CHEMISTRY 0620/02 Paper 2 October/November 2003 1 hour Candidates answer on the Question Paper. No Additional Materials required #### **READ THESE INSTRUCTIONS FIRST** Write your name, centre number and candidate number in the spaces at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. #### Answer all questions. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is provided on page 20. If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page. Stick your personal label here, if provided. | For Examiner's Use | | | | | | |--------------------|--|--|--|--|--| | 1 | | | | | | | 2 | | | | | | | 3 | | | | | | | 4 | | | | | | | 5 | | | | | | | 6 | | | | | | | TOTAL | | | | | | This document consists of 17 printed pages and 3 blank pages. 1 The diagrams show four methods of purifying substances. Α - (a) Which of these methods, A,B,C or D, is best used for - (i) separating the different colours in a sample of ink? (ii) separating two liquids with different boiling points? (iii) separating mud from water? - (iv) making crystals of copper sulphate from copper sulphate solution? | | | 1 | |--|--|---| | | | ı | | | | ı | | | | ı | | | | l | [4] | For | |------------| | Examiner's | | 1100 | - (b) State the name given to the method of separation shown in - (i) diagram **A**, - (c) Method A can be modified to separate petroleum into useful fractions. The diagram below shows the different fractions obtained from a fractionating column. (i) Which of these fractions has the lowest boiling point? (ii) State **one** use for each of the following fractions. bitumen (d) Petroleum is a mixture of organic compounds. Which **one** of the following best describes the compounds found in petroleum? Put a ring around the correct answer. acids alcohols carbohydrates hydrocarbons [3] | For | |------------| | Examiner's | | Use | | (e) | (e) Before petroleum is fractionated, it is often heated to remove dissolved natural gas. Most of this natural gas is methane, CH ₄ . | | | | | | | | | | | |-----|---|---|--|--|--|--|--|--|--|--|--| | | electrons are arranged in methane. | | | | | | | | | | | | | show hydrogen electrons as | | | | | | | | | | | | | show carbon electrons as | × | [2] | (f) | Methane, ethane and propane belong to a particular homologous series of compou
State the name of the homologous series to which these three compounds belong. | | |-----|--|-----| | | | [1] | 2 The diagram below shows a modern landfill site for the disposal of waste materials. The waste materials are broken down naturally in several stages. | (a) | mat
Wha | ne first stage, micro-organisms (mainly bacteria) break down some of the organic erial in the waste to carbon dioxide. at is the name given to the process by which organisms use food to produce carbon tide? | |-----|------------|--| | | | [1] | | (b) | | ne second stage, the micro-organisms break down organic substances to produce monia, hydrogen and more carbon dioxide. | | | (i) | Describe a test for hydrogen. | | | | test | | | | result | | | (ii) | The large volumes of hydrogen produced may be hazardous. Explain why hydrogen may be hazardous when mixed with air. | | | | | | | (iii) | Ammonia is a base. Describe a test for ammonia. | | | | test | [5] (c) In the third stage, ethanoic acid is produced. Draw the structure of ethanoic acid showing all atoms and bonds. [1] - (d) In the fourth stage, carbon dioxide reacts with hydrogen to form methane and oxygen. - (i) Complete the equation for this reaction. $$CO_2 + \dots \rightarrow CH_4 + O_2$$ (ii) State one use of methane. (iii) Methane is a gas. Which **two** of the following statements about gas molecules are true? Tick **two** boxes. The molecules are far apart. The molecules are not moving. The molecules are randomly arranged. The molecules are arranged in a regular manner. [4] **(e)** The list below shows some of the substances which are found in the liquid which drains through the waste. aluminium calcium carbonate iron lead magnesium nickel sodium sulphate zinc From this list choose | (i) | a metal used to galvanise iron. | | |-------|--|---------| | (ii) | a transition metal. | | | (iii) | a metal which is in Group IV of the periodic table. | | | (iv) | a substance which will release carbon dioxide when an acid is added. | | | | | | | (v) | a metal which is used to make aircraft bodies. |
[5] | | | | 191 | [2] 3 One way of making lime from limestone (calcium carbonate) is shown in the diagram. The limestone is mixed with coke and dropped into the limekiln. The coke is burnt and releases heat. | (a) | State one use of limestone, other than in making lime. | |-----|---| | | [1] | | (b) | Coke is mainly carbon. Write a symbol equation for the burning of carbon. | | | [2] | | (c) | State the name of the type of reaction which releases heat energy. | | | [1] | | (d) | The heat produced by the burning coke causes thermal decomposition of the limestone. Complete the word equation for the thermal decomposition of calcium carbonate. | | | calcium carbonate \rightarrow + | | | | | (e) | (i) | Complete | the | following | equation | for | the | reaction | of | calcium | carbonate | with | |-----|-----|------------|-------|-----------|----------|-----|-----|----------|----|---------|-----------|------| | | | hydrochlor | ic ac | id. | | | | | | | | | $$\mathsf{CaCO}_3 + \dots \, \mathsf{HC}l \to \mathsf{CaC}l_2 + \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O}$$ | (ii) | Describe how you would test for the gas given off in this reaction. | | |------|---|--| | | | | [3] (f) Quicklime, CaO, is a product of the thermal decomposition of calcium carbonate. When quicklime is heated strongly with coke, calcium carbide is formed. $$\text{CaO} + \text{3C} \rightarrow \text{CaC}_2 + \text{CO}$$ (i) What type of reaction is the conversion of C to CO? Explain your answer. (ii) When water is added to calcium carbide, CaC₂, acetylene is formed. State a use of acetylene. [3] | (a) State the name given to the Group VII elements. | | | | | | | | |---|--|--|-----------------|-----------------------------|---|--|--| | | | | | | | | | | (b) | Bromine has two isotopes. The nucleon (mass) number of bromine-79 is 79 and of bromine-81 is 81. | | | | | | | | | (i) | What i | s the meaning | of the term <i>isotopes</i> | 5? | | | | | | | | | | | | | | (ii) | Complete the table to show the numbers of electrons, neutrons and protons in atom of bromine-79 and bromine-81. A copy of the Periodic Table is printed page 20. | | | | | | | | | | number of | bromine-79 | bromine-81 | | | | | | | electrons | | | | | | | | | neutrons | | | | | | | | | protons | | | | | | (c) | Wh | en chlo
nge-red | rine is bubbled | - | ent with chlorine. of potassium bromion ty of chlorine compar | | | | | (ii) | Write a | a word equatior | n for this reaction. | (d) In order to get the maximum yield of bromine from seawater, acid is added during the extraction procedure. The graph shows how the yield of bromine changes with pH. (i) What is the highest pH at which the yield of bromine is 100%? (ii) The pH scale is used to measure acidity. Some pH values are given below. рН 3 pH 5 pH 7 pH 9 pH 11 From this list of pH values choose the pH which is most acidic. the pH of a neutral solution. [3] **(e)** Bromine water can be used to distinguish between ethane and ethene. Describe what you would observe when bromine water is added to ethene. [1] [1] - 5 When fuels are burnt, carbon dioxide and water are formed. - (a) Complete the equation for the burning of propane. $$C_3H_8 + \dots O_2 \rightarrow 3CO_2 + 4H_2O$$ | (b) | Describe a chemical test for water. | |-----|-------------------------------------| | | test | result[2] **(c)** In which **two** of the following is carbon dioxide produced. Tick **two** boxes. a car driven by a petrol engine magnesium carbonate reacting with an acid sodium reacting with water zinc reacting with hydrochloric acid [2] For Examiner's Use (d) The diagram shows a water heater. If some of the air holes become blocked, a poisonous gas is produced. | (i) | State the name of this poisonous gas. | | |------|---|----| | (ii) | Explain how this poisonous gas has been formed. | | | | | [2 | 0620/2/O/N/03 **[Turn over** (e) The table below compares the amounts of carbon dioxide and sulphur dioxide formed when 1 kilogram of different fuels are burnt. | fuel | mass of carbon
dioxide produced/g | mass of sulphur
dioxide produced/g | |------|--------------------------------------|---------------------------------------| | oil | 2900 | 5.0 | | gas | 2500 | 0.1 | | coal | 2500 | 11.0 | | (i) | Which fuel is least polluting? | |-------|--| | (ii) | Which fuel when burnt, contributes most to the formation of acid rain? | | (iii) | State two harmful effects of acid rain. | | | | | (iv) | When acid rain falls on the ground, it can react with insoluble aluminium compounds in the soil. A solution of aluminium ions is formed. | | | Describe what you would observe when aqueous sodium hydroxide is added to a solution containing aluminium ions. | | | | | | [6] | 6 Aluminium is extracted from its ore, bauxite. The bauxite is purified to give aluminium oxide. Electrolysis is then used to extract the aluminium from aluminium oxide dissolved in cryolite. | | melting point of pure aluminium oxide is 2070 °C. melting point of the mixture of aluminium oxide and cryolite is about 1000 °C. | |-----|--| | (a) | Suggest why electrolysis is used to extract aluminium from aluminium oxide rather than reduction using carbon. | | | [1] | | (b) | How is the electrolyte of aluminium oxide and cryolite kept molten? | | (c) | What property of graphite makes it suitable for use as electrodes? | | (d) | | | (e) | The melting point of steel is about 1500 °C. Suggest two reasons why molten aluminium oxide is not used by itself in this electrolysis. | | | [2] | | (f) | During the electrolysis, hot oxygen is formed at the positive electrodes. Suggest why the positive electrodes have to be replaced frequently. | | | | | For | |------------| | Examiner's | | 1100 | | (g) | Aluminium is formed at the negative electrode. | |-----|--| | | Complete the following equation for the reaction at the negative electrode | $$Al^{3+} + \dots \rightarrow Al$$ [1] (h) Why do aluminium ions move towards the negative electrode?[1] (i) A sample of bauxite ore had the following composition: aluminium oxide 120g iron(III) oxide 30g silica 40g titanium(IV) oxide 10g Calculate the percentage of aluminium oxide in this sample of bauxite. [1] | (j) | Aluminium is a metal in Group III of the Periodic Table. | |-----|---| | | State three physical properties which are typical of most metals. | | 1 |
 |
 | | |---|------|------|--| | | | | | 17 ## **BLANK PAGE** 18 ## **BLANK PAGE** 19 ## **BLANK PAGE** For Examiner's Use The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.). | _ | e Elements | |------------|-------------------| | DATA SHEET | iodic Table of th | | | The Per |